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Text S1: Relating the offspring distribution to the size
distribution of transmission chains

Recall that the coefficient qi of the offspring generating function Q(s) =
∑∞

i=0 qis
i specifies the

probability that an infected individual will cause i subsequent infections. Therefore, the kth coefficient
of [Q(s)]

2
, equal to

∑k
i=0 qiqk−i, is the probability that two individuals cause a total of k infections. By

induction, it follows that the kth coefficient [Q(s)]
n

is the probability that n individuals cause a total
of k infections. Meanwhile, for every transmission chain of size j, there are j individuals that cause
j − 1 infections. However, the probability of j individuals causing j − 1 infections is not the same as the
probability, rj , that a stuttering chain has size j, because in the latter case the order of the infections
matter. For example, if the index case has no offspring then there will not be a chain of size j, even if
the remaining j − 1 individuals cause j − 1 infections.

Fortunately, there is a redundancy that allows us to relate rj to the probability that j individuals
have j − 1 offspring. First note that there is a one-to-one mapping between a sequence of j non-negative
integers that sum up to j−1 and the way in which j individuals can have j−1 offspring. Let us represent
one such offspring sequence, A, as a1a2 . . . aj meaning that individual i has ai offspring. Meanwhile, every
stuttering chain of size j can be described by an offspring sequence B = b1b2 . . . bj of non-negative integers
(figure S1A). This is accomplished by setting b1 equal to the number of offspring of the primary case
(i.e. first generation), the next b1 numbers equal to the number of offspring for individuals in the second
generation, the next numbers equal to the number of offspring for individuals in the third generation and
so forth, until the stuttering chain ends.

Theorem 1: For every offspring sequence A = a1a2 . . . aj that satisfies
∑j

i=1 ai = j − 1, exactly one of
the cyclic permutations

A′1 = a1a2 . . . aj−1aj ,

A′2 = a2a3 . . . aja1,

· · ·
A′j−1 = aj−1aj . . . aj−3aj−2,

A′j = aja1 . . . aj−2aj−1

corresponds to a valid transmission sequence.

Proof: For an offspring sequence B = b1b2 . . . bj let the cumulative reproduction number, cBi =
∑i

l=1 bl,
denote the number of infections caused by individuals 1, 2, . . . i. Then for B to be a valid transmis-
sion sequence, the necessary and sufficient conditions are,

1. cBj = j − 1

2. cBi ≥ i for i < j.

The first condition assures a stuttering chain of size j has exactly one primary infection and j − 1
secondary infections. The second condition assures that the stuttering chain does not go extinct
before reaching a size of j.

Note that for our definition of the offspring sequences, A′i, condition 1 is always satisfied. Thus to
complete our proof we first show there exists a k such that A′k satisfies condition 2 and then we
show k is unique. Define cA0 = 0 and let k′ equal the value of i ∈ {1, 2, . . . j} that results in the first
occurrence of the global minimum of the number of extant infectors, di ≡ cAi−1 − i. As illustrated
conceptually in figures S1B and S1C, we will show A′k′ is the unique cyclic permutation of A that
is a valid transmission sequence. To prove existence, consider four possible value ranges for k′ and
i.
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Case 1: k′ = 1 and i < j. Then di+1 ≥ −1 because d1 = −1 and so

cAi = (cAi − i− 1) + i + 1 = di+1 + i + 1

≥ i

Case 2: k′ > 1 and i ≤ j − k′. Here, dk′+i ≥ dk′ and so

c
A′

k′
i = cAk′+i−1 − cAk′−1

= (cAk′+i−1 − k′ − i) + k′ + i− (cAk′−1 − k′)− k′

= dk′+i − dk′ + i

≥ i

Case 3: k′ > 1 and i = j − k′ + 1. Noting that dk′ ≤ d1 − 1 = −2

c
A′

k′
i = cAk′+i−1 − cAk′−1

= cAj − cAk′−1

= j − 1− (cAk′−1 − k′)− k′

= i− 2− dk′

≥ i

Case 4: k′ > 1 and j − k′ + 1 < i < j. Here, dk′+i−j > dk′ and so

c
A′

k′
i = cAj + cAk′+i−1−j − cAk′−1

= j − 1 + (ck′+i−1−j − k′ − i + j) + k′ + i− j − (cAk′−1 − k′)− k′

= dk′+i−j − dk′ + i− 1

≥ i

Case 1 shows that when k′ = 1, then A′1 = A satisfies condition 2 and is thus a valid transmission
sequence. Cases 2-4 show that when k′ > 1, A′k′ is a valid transmission sequence because it satisfies
condition 2 for the full range of 1 ≤ i < j. This proves that a valid permutation sequence exists
amongst the cyclic permutations of A.

We now only need to show that for a valid transmission sequence, B = b1b2 . . . bj , all cyclic permu-
tations of B′k of B are invalid transmission sequences. Using analogous notation to the above,

c
B′

k

j−k+1 = cBj − cBk−1

= j − 1− cBk−1

≤ j − k.

Therefore, c
B′

k

j−k+1 does not satisfy condition 2 and so B′k is an invalid transmission sequence.

Given the independent and identically distributed assumption of our branching process model, the
probability of an ordered set of j individuals having offspring according to sequence A is identical to the
probability of the same individuals having offspring according to a rotated permutation of A. It follows
from theorem 1 that the probability of having a stuttering chain of size j is 1/j times the probability of j
individuals causing j− 1 infections. Therefore the probability of having a stuttering chain of size j is the
(j − 1)th coefficient of Tj(s) = 1

j [Q(s)]
j
. Differentiation of Tj(s) yields the result provided in the main

text,

rj =
1

(j − 1)!
T

(j−1)
j |s=0.


